TGF b1

Force dependent effects of chronic overuse on fibrosis-related genes and proteins in skeletal muscles

Of eight fibrosis-related mRNAs examined, only FGF2 demonstrated a consistent significant increase in the HFHR group, compared to the FRC group. However, protein amounts of collagen type 1, collagen type 3, and TGFβ1 were significantly higher in the HFHR, compared to the FRC and LFHR groups, while CCN2 and FGF2 were higher in both HFHR and LFHR, compared to the FRC group.

Recombinant Human Elafin Promotes Alveologenesis in Newborn Mice Exposed to Chronic Hyperoxia

Elastase inhibitors reverse elastin degradation and abnormal alveologenesis and attenuate the lung structural abnormalities induced by mechanical ventilation with O2-rich gas. The potential of these molecules to improve endothelial function and to ameliorate severe bronchopulmonary dysplasia (BPD) during lung development is not yet understood.

Performance of Repetitive Tasks Induces Decreased Grip Strength and Increased Fibrogenic Proteins in Skeletal Muscle: Role of Force and Inflammation

Authors

Samir M. Abdelmagid, Ann E. Barr, Mario Rico, Mamta Amin, Judith Litvin, Steven N. Popoff, Fayez F. Safadi, Mary F. Barbe

Abstract

This study elucidates exposure-response relationships between performance of repetitive tasks, grip strength declines, and fibrogenic-related protein changes in muscles, and their link to inflammation. Specifically, we examined forearm flexor digitorum muscles for changes in connective tissue growth factor (CTGF; a matrix protein associated with fibrosis), collagen type I (Col1; a matrix component), and transforming growth factor beta 1 (TGFB1; an upstream modulator of CTGF and collagen), in rats performing one of two repetitive tasks, with or without anti-inflammatory drugs. To examine the roles of force versus repetition, rats performed either a high repetition negligible force food retrieval task (HRNF), or a high repetition high force handle-pulling task (HRHF), for up to 9 weeks, with results compared to trained only (TR-NF or TR-HF) and normal control rats. Grip strength declined with both tasks, with the greatest declines in 9-week HRHF rats. Quantitative PCR (qPCR) analyses of HRNF muscles showed increased expression of Col1 in weeks 3–9, and CTGF in weeks 6 and 9. Immunohistochemistry confirmed PCR results, and also showed greater increases of CTGF and collagen matrix in 9-week HRHF rats than 9-week HRNF rats. ELISA, and immunohistochemistry revealed greater increases of TGFB1 in TR-HF and 6-week HRHF, compared to 6-week HRNF rats. To examine the role of inflammation, results from 6-week HRHF rats were compared to rats receiving ibuprofen or anti-TNF-α treatment in HRHF weeks 4–6. Both treatments attenuated HRHF-induced increases in CTGF and fibrosis by 6 weeks of task performance. Ibuprofen attenuated TGFB1 increases and grip strength declines, matching our prior results with anti-TNFα. Performance of highly repetitive tasks was associated with force-dependent declines in grip strength and increased fibrogenic-related proteins in flexor digitorum muscles. These changes were attenuated, at least short-term, by anti-inflammatory treatments.

Link to Article

http://dx.doi.org/10.1371/journal.pone.0038359